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Abstract. It is shown that invariance of Lagrangian field theory under a class of the 
coordinate-dependent Lorentz group of transformations requires the introduction of a 
massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force 
between particles in vacuum. Recent experiments demonstrating repulsion and attraction 
between circularly polarised laser beams are interpreted to be due to such a force enhanced 
by spin polarisation of sodium vapour, through which these beams pass. 

1. Introduction 

Gauge symmetry has been one of the most powerful tools for description of the 
fundamental processes in nature. In fact, in terms of present day convictions, it is the 
symmetry that dictates interaction between particles. To be more explicit, global 
charge gauge invariance of quantum field theory leads to conservation of charge in the 
sense that charge, counted in units of electronic charge, remains unaltered in particle 
reactions. On the other hand, local gauge invariance requires the introduction of a 
massless vector field, which leads to a long-range interaction between charges, thereby 
providing a mechanism for the measurement of charge. The physical consequence of 
invariance under the global SU(2) group of transformations is the conservation of 
isospin, which provides a framework for counting isospin and its projections; while 
invariance under local SU(2) transformation introduces the Yang-Mills fields which 
provide the necessary mechanism for dynamical measurement of isospin. Further 
extension of this theory leads to the explanation of the strong interaction in terms of the 
exchange of gluons. 

The question we address ourselves to is whether spin can also be dynamically 
measured through the exchange of some gauge boson. It is to be recollected that global 
Lorentz invariance leads to conservation of angular momentum which provides a 
frame-work for the counting of spins and their projections. One would therefore expect 
that the local Lorentz invariance would provide the desired symmetry for the dynamical 
measurement of spin through the exchange of massless gauge bosons. 

It is well known that invariance of the Lagrangian for Dirac particles under the 
coordinate-dependent Lorentz group of transformations requires a 24-component 
massless gauge field (Utiyama 1956, Kibble 1961, Salam 1973). These gauge fields, in 
combination with the 16-component vierbeins in Riemannian space, reproduce the 
standard theory of gravitation. We find that for a certain restricted coordinate 
dependence of the parameters of the Lorentz group of transformations, one needs a 
massless axial vector gauge field which gives rise to a force between particles with spin in 
flat space-time. This force is found to be repulsive for antiparallel spins and attractive 
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for parallel spins. This is precisely the experimental result with the polarised laser 
beams. It has been observed by Tam and Happer (1977) that, while circularly polarised 
laser beams of opposite polarisation repel each other, beams of equal polarisations 
attract in a medium of sodium vapour for laser frequencies on the high-frequency wing 
of the D1 line. In this paper, we interpret these results in terms of a long-range spin-spin 
force resulting from the exchange of massless axial vector gauge particles. The role of 
the sodium vapour, which is very crucial for the observation of the attraction and 
repulsion of the beams, is also explained. The spin-spin force is enhanced due to spin 
polarisation phenomena occurring in the sodium vapour. A generalised dielectric 
formulation of the enhancement of the interaction has been developed and the result 
for the deflection of the laser beams as a function of the sodium vapour density has been 
compared with experimental data. The agreement is excellent for coupling strength, 

In 0 2 we develop the gauge theory for spin-spin interaction. Section 3 deals with 
the calculation of the two-body spin-spin potential. The application of the theory in 
laser experiments is discussed in Q 4. 

g2/4.ir = io-’. 

2. Spin gauge theory 

Under the Lorentz group of transformations 

x, --* x: = x ,  + a,JV, 

+ ( X I +  Icl’b’) = W ( x )  

a,, = -all, 

the Dirac field transforms as 

where 

= exp(iiC,,a,,) 
1.-1 with E,, = 21 yCLyY. The Dirac Lagrangian density 

2 D  = -$(y,a, +m)$  (3) 

is invariant under this transformation, if a,, are constants. However, if the parameters 
cyf iv  are coordinate dependent, this is not true any more. In this situation, one has to 
alter the Lagrangian to restore invariance. One defines the covariant derivative, 

D,$b) = (8, +igB,(x))$(x) (4) 

where B, = B,,,AZvA, B,,Uh being the well known 24-component field. This covariant 
derivative leads to the invariant Lagrangian, 

ZD = -$(y,D, + m)Icl. ( 5 )  

E F v h l a f i a v A  = 6alA(x)  (6) 

For the particular coordinate dependence 

the Lagrangian ( 5 )  remains invariant, with 
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The choice (6) implies complete antisymmetry in the indices of a,(~,~ and cor- 
responds to the reduction of the 24-component B,,"A field to the four-component axial 
vector field a,, the fields being related by 

(8) 
1 B @,PA ( x )  = SE fivAi$((X ) *  

The law of transformation for the axial vector gauge fields follows from the general 
transformation law for the fields B, B,,uAXvA consistent with the invariance. B, 
transform as: 

B,(x) +B:(x') = n ( x ) ~ , ( x ) ~ ( x ) - '  -(ig)-'(a,n(x))n(x)-' 

a,(X)+a~(x ' )=a,(x)+~~,,(X)a,(X)-g- 'a,Lh(X).  (10) 

(9) 
which leads to 

In the above derivation use has been made of the commutation of the generators given 
by : 

(1 1) 

(5a)  

(12) 

[ X f i Y ,  Lul = i(S,,Xu, - S,,&, + 

9 D  = -G(y,a, + m)sl/ -$gGy,ySsl/a,. 

FMY = a,Bu - a&, +ig[B,, &I. 

- &Au). 
On account of (7) LZD of ( 5 )  becomes 

The covariant curl of this axial photon gauge field can be written as 

The gauge field Lagrangian, therefore, works out to be 

In deriving (13) we have used 

Xc ,v , r s=  - - i ( 4 A S  - 8 g s a v r )  (14) 

a,a, = 0. (15) 

as generator components of the vector field and also have used the Lorentz condition 

Having obtained the coupling of the axial vector gauge field to the spin-; Dirac field, 
we now consider its coupling to the neutral spin-1 field, where the transformation laws 
under the Lorentz group of transformations are: 

Ar(x) + A:(x') = n r s  (x)As (x) 

firs = exp~ i i~ ,u , r s~ ,v (x ) ) .  (16) 

2~ = -$(D,A, - D&,)(D,Av -DAW) + m2A,A, (17) 

D,Ar = a J r  + f i v ~ f z  vA,rsaCAs. (18) 

The invariant Lagrangian for this massive vector field is given by 

where 

Upon simplification (17) reduces to 
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For the coupling of the photon field to the axial vector gauge field we have to set 
m = 0 in the above Lagrangian. But, equation (19), even without the mass term, is not 
invariant under the U(l )  gauge transformation in A, + A, + e-la (x), where Oa (x) = 
0. This can be rectified by expanding the theory so as to include a scalar field. It will be 
noticed that the lack of U ( l )  gauge invariance can be traced to the definition of 
covariant derivative D,A, in equation (18). We therefore define a new covariant 
derivative 

D,A, = a,(A ,+ Aa~)+aig&,.,,~,.,,,,a,(A, + h a d )  

4 (x) + 4'b) = 4 ( x )  - (A 4-la (x) 

(20) 

where 4 is the scalar field which transforms as 

under U(1). It may be seen that this new covariant derivative is invariant under U(1) 
and covariant under local Lorentz transformation. Using this covariant derivative one 
obtains the following invariant Lagrangian: 

2=- i { f ,y f ,y  +2g~,.slf,~a<(A, +Aas4)+2g2[(As +Aas4)2a2-((As +Aas4)a , )  I) 
(21) 

wheref,, = d,A, -a,&. To this we have to add the kinetic energy term, - $ ( a , 4 ) ( d W ~ ) ,  
of the scalar field along with a counter term -A -'(a&)A, to ensure U( 1)  invariance of 
the kinetic energy term. Thus the complete Lagrangian reads 

2= -f{f,,,f,,, + 2 g ~ , Y S ~ f , Y a ~ ( A S  +Aas4)+2g2[(As +Aas4)2a2-((As +Aas4)as)21) 

2 

-8a,4)(dfi4) - A  -'(a,4)Afi - iF,J;,, (22) 

where the last term stands for the axial field Lagrangian. Equation (22) can be rewritten 
as 

5?= -if,yf,y +J,(A, +Aa,4)-i(a,4)(a,4)-A-'(a,4)A, -iF+YF'-y (23) 

where 
J - '  

K - - 2 g ~  , v ~ < f , v ~ <  -tg2[a2(AK + A  8 ~ 4 )  -((As + A ~ A ) G ) ~ K I .  
The equation of motion for the scalar field is 

El4 = Aa,J: 
where 

J&=JK+Jk 

with 
J$= -ig2[a2(AK + A  3 ~ 4 )  - ((As + A  ~ , ~ ) u , ) u K ] .  

Finally in the limit A + 0 

5?= --iffiVf,, +A,(S,, -aCLaYICOJY -$F,,FwY (25) 

where we have thrown a four divergence term and used the Lorentz condition for the 
vector fields. In this limit, 

(26) J - L  1 2  2 
K - -2gE,,K<f,va< -5% ( A d  - ( a  * Ab, ) .  

The additional term (a,aJ,/U) appearing in the above Lagrangian restores the U(l )  
gauge invariance without in any way affecting the relevant physics, since on account of 
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d,A, = 0, it contributes a four divergence term to the Lagrangian. This term is 
non-local; however, it should be remembered that it is obtained as the limiting case of a 
local theory. 

It is to be noted that while dealing with symmetries of Lagrangian field theories, it is 
the action which is required to be invariant, SS = S' - S = 0. For the case of gauging the 
Lorentz group (Kibble 1961) one has 

S =  d 4 x 2 ( x )  I 
and 

S' = d4x'2'(x') = I 
where J is the Jacobian for transformation of the four volume element. So, invariance 
of the action implies 2 ' (x ' ) [ l+  a,(sx,)] = 2 ( x )  which is identical to 2 ' ( x )  = 2 ( x ) .  One 
has, therefore, to consider a group of transformations in the local tangent space where 
the spinor fields transform as $'(x) = R(x)$(x), where R(x) is the SL(2, C) double 
covering of A(x) and the vierbeins h,, required in the definition of covariant derivatives 
transform as hL,(x) = hFb(x)A:(x). But in our case of gauging the Lorentz group with 
the particular choice of the transformation parameters, given by equation (6), it turns 
out that a,(Sx,) = 0; so that the Jacobian is unity. This suggests that the invariance of 
the action S for our case requires 2 ( x ' )  = 2 ( x ) ,  which is different from the requirement 
2 ' ( x )  = 2 ( x )  of the conventional 'local Lorentz group' in general relativity. 

Before concluding this section a further point is in order. Since the local Lorentz 
transformations for arbitrary coordinate dependence of a,,(x) form a group, it should 
be evident that any particular coordinate dependence of a,,(x) should also form a 
group. 

3. Two-body potential 

The two-body potential due to a single axial photon exchange can be calculated using 
the interaction Lagrangians. In the following we calculate the potentials between (i) 
two fermions (ii) two vectors and (iii) a vector boson and a fermion. The potential will 
be defined as the Fourier transform of the non-relativistic limit of the scattering 
amplitude in the single axial photon-exchange approximation, when no energy, but 
only momentum, is transferred. 

The Feynman diagram for the scattering of two fermions due to exchange of a single 
axial photon is given infigure 1. The derivation of the interaction potential is carried 
out in the standard way (Berestetskii et a1 1971). The scattering amplitude is given by 

(28) Mfi = gr2(C  Y , Y ~ u ~ ) D , ~  (q)(C;yvysU2) 

where 

q=P;-PI=p2-Ph and g' = 2g. 

The use of the expansion of the spinor function, 

- (1 - / p / 2 / 8 ~ 2 ~ 2 )  W 
U ( P )  = J2m( (a * p/2mc) w ) , 
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l a )  I b)  

Figure 1. ( a )  Feynman diagram for scattering of two fermions in the single-axial photon- 
exchange approximation. The broken line represents the axial photon propagator. ( b )  
Feynman diagram for scattering of two photons. The wavy lines stand for the photons. 

and the Coulomb gauge for the axial vector propagator, 

in the non-relativistic limit c-' + 0 gives 

Mfi = -2m12m2( w;* w;*u(q) Wl W2) 

where W are the two-component objects satisfying W* W = 1. Here 

The Fourier transform of the potential (30) gives 

Before proceeding to calculate the interaction potential between two vector 
particles, which also includes photons, we may recall that in QED, photon-photon 
scattering takes place in the fourth order of the coupling constant. In contrast, the 
exchange of the axial photon predicts the possibility of photon-photon scattering in 
second order of the coupling strength. The Feynman diagram for the process is given by 
figure l (b ) .  The scattering amplitude reads 

(32) 

Using the non-relativistic propagator for the axial photon in the propagator gauge and 
the definition of the spin matrix ($)ab = -i.zabi, which leads to the identity 

2 Mfi = -g E f i v A 6 ~  f i ~ v , A f c e ; v e 4 v , ( 2 k ~  + q),(2k2 -q)fi,elAe2A,D<c,(q). 

(e'lSile) = -i(e'x e),, (33) 

the amplitude turns out to be 

4 n  

4 
Mfi = 4g2wlw+e;e;I[(s1 * S z ) -  (SI * 4 1 ~ 2  q)/q211ele2). (34) 
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From (34), the two-body potential follows as: 

A similar procedure for scattering between a ftrmion and a vector boson (neutrino and 
photon) leads to the interaction potential, 

It is clear from the equations (31), (35) and (36) that the force between two particles 
with spins is of long range and Coulomb-like. It is attractive for parallel spins and 
repulsive for antiparallel ones. 

4. Experiment with polarised laser beams 

The above long-range spin-spin interaction must be very weak, otherwise, it would 
contribute substantially to electrodynamic processes, such as Moller scattering, and 
Compton scattering etc. Since our claim is that this very weak interaction is responsible 
for the observed attraction and repulsion between polarised laser beams in sodium 
vapour, it is necessary to explain the mechanism of its enhancement due to spin- 
polarised vapour atoms. The circularly polarised laser beam with a frequency slightly 
higher than that of the sodium D1 line optically pumps the atoms from the ground state 
to the 32P1/2 state, thereby producing a medium of spin-polarised atoms. The spins of 
the two circularly polarised laser beams interact with each other through this medium. 
We outline a linear response theory for the 'dielectric function' { ( q ,  0), that determines 
the effective interaction between photons in such a medium, in terms of the cor- 
responding interaction in vacuum. The effective scattering amplitude is given by 

f(q) being the amplitude for scattering of two polarised photons in vacuum, in the one 
axial photon-exchange approximation., The virtual axial photon emitted by the laser 
photon interacts with the spin density of the spin polarised medium producing an 
induced spin density, which in the linear approximation is given by 

(Sj""(x, t ) ) =  -in 5 d3x' 1 dt'e(t-t')(Oi[Si(x, t ) ,  Sj(x', t')]/O)a,(x', t'). 

Here 

si(x, t )  = (v2 -a2/at2)ai(x, t )  (39) 

and n is the density of the sodium atoms. The state 10) stands for the state 32P1/2 of the 
sodium atom. Equation (38) can be converted to 
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with the aid of equation (39) followed by integration by parts. Inside the medium 

s:ota’ (x, t )  = s;xt (x, t )  + (S;nd (x, t ) )  

= [ d3x’ [ dt’ c i j ( x  -x’, t - t ’ )Sy t (x ‘ ,  t’) .  

To evaluate gE,,(q, w )  we introduce a complete set of intermediate states in equation 
(40), so that 

Elij(q, w )  =Si, -in d t  elWr[(0ISi(q, O)lr)(rlaj(-q, - t ) lO)  

which on using equation (39) becomes 

On carrying out the time integration, we obtain 

Because of the close proximity of the state 32P3/2 to the state 32P1/2, this intermediate 
state will give the most dominant contribution on account of the energy denominator. 
We therefore ignore all the other intermediate state contributions and obtain 
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So the relevant dielectric function is 

E(q, 0 )  = 1 - 2 n g 2 / n ( q 2  -a2). (46) 

The photon-photon scattering amplitude, in a medium of sodium atoms under 
conditions discussed above, therefore becomes, for small q, 

Although the light beam will be scattered in all directions, there will be a particular 
angle at which the scattering amplitude will have a peak; and we shall take this to be the 
direction of the scattered beam. This will correspond to q at which ;(q, 0) has a 
minimum. One finds that the angle 8 between the incident and the scattered beam is 
given by 

n 2ng2 2 1/2 

@ s = ( $ )  =m(1+& 

where k is the momentum of the laser photon. This is somewhat different from the 
angle measured by Tam and Happer (1977). They measure half the angle of divergence 
between the scattered beams, the incident beams having a initial convergence. This 
angle is 

R 2ng2 ' I 2  e = e s - e o = -  I+-  I,,( n3 ) --*O 
(49) 

where 2e0 is the angle of convergence of the two incident laser beams. Using the 
experimental values 

2e0 = 2 mrad, 

Ikl= 16970 cm-' for the sodium D1 line and 

n = 17 cm-' for sodium D1 -D* separation, 

we find good agreement between the graph of 8 against n and our result (49) for 
g2/4rr  = 0.7 x lo-'. The results of our theory and the experimental observations of 
Tam and Happer (1977) are compared in figure 2. It will be seen that except at low 
densities the agreement is excellent. 

It may be recalled that while reporting their experiment, Tam and Happer have 
outlined a theoretical explanation of their observations. We have closely examined 
their arguments and find that their semiclassical, semi-quantitative theory is unsatis- 
factory as well as incomplete. In the following we outline some of the more serious 
defects of their arguments. 

These authors seem to base their theory on the belief that 'the force is transmitted 
between the beams by sodium atoms in much the same way that virtual photons are 
believed to transmit the force between the charged particles' (Happer and Tam 1977). 
If this were the case, the resulting force would not be of long range since atoms are 
massive. 

Their explanation of the repulsion of laser beams is based on the formula 
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o Experiment 

- Theory 

0 
2 I I 

5 10 15 2 0  25 
n ( c ~ - ~ I  x10’2 

Figure 2. Comparison of the observed deviation angle 8 with the predicted values for 
various sodium densities n. 

which causes the expulsion of spin up (spin down) atoms from the u+(u-) beams. As a 
result, the light beams bend under the force of reaction. Here one can raise the 
following two objections. Firstly, nothing debars the atoms from flying in all possible 
directions, In fact, figure 1 of Tam and Happer’s paper (1977) depicts such a state of 
affairs. If this is so, the net reaction on the beams should vanish and the beams should 
not bend. Secondly, even if one accepts a preferential flight of the atoms, along the 
direction of the other beam, attraction between two u+ or two u- beams cannot take 
place. This is because, their interaction energy being positive, light beams can only 
expel atoms. This will always give rise to repulsion between light beams, irrespective of 
their polarisation. 

The authors have ignored the initial convergence of the beams in their derivation of 
the angle between the emergent beams, the inclusion of which will appreciably affect 
the agreement of their final result with experiment. 

It is worth noting that equation (47) in the limit II + 0 leads to Coulomb-like 
scattering between two circularly polarised light beams. This is the crucial difference 
between our theory and that of Tam and Happer. However, due to the extremely feeble 
strength of the interaction, as estimated by us in the above, the deviation of the beams in 
vacuum may be undetectable. 

5. Conclusion 

We thus conclude that there exists an elementary interaction between spins of particles, 
which follows from a gauge principle. This force is found to be weaker than the weak 
interaction; it is of the same order of magnitude as the super-weak interaction 
(Wolfenstein 1964). We have examined all consequences of such an interaction on 
normal QED processes and seen that because of the abnormally weak coupling between 
spins, its contribution to quantum electrodynamic processes will be negligibly small. 
However, the weak spin-spin coupling, like gravitation, may manifest itself in astro- 
physical phenomena through a photon-neutrino interaction. 
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